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TABLE I To obtain Kyhl's “double SMITH-
Outrur IMPEDANCE ACROSS 1HE GRriD HTIMS chart,” we suggest the following
] OF THE REFLEX KILYSTRON construction. An inversion in the unit circle,
followed by a symmetry* (reflection) with
React R Xs R . Tap e .
cactor h d oh 05 respect to the line I'=1. This can be written
Cutoff |2.99X105 2| — 3.91 X102 Q| 3.91 X10% @ i L “pt e

Coaxial | 2.75 X105 | —19.01 X10° 0 1.89 X10% %I}fl_}fl/cﬁily as T I™+2,  where
We next consider the statement that our
method is not analytic. By this statement,
TABLE 1I we presume that Kyhl means that the modi-
GAIN MEASURED AND CALCULATED fied § and the modified 87! transformations,
- Gain (db) or the Darboux transformation’ as shown in
Reactor 1 gf‘;:s‘fgg v, 3&%?% Ref"%}lrer Iy (ma) N 8 Caloninted footnote 2, is presented in its natural graph-
P 2 250 - e 075 g 21 ical form. The following is the transforma-

Coaxial { 28.0 304 268 2.5 6.75 055 29.1 tion in analytic form:
- [T: = 1/T* 1n|[OI", AB] = 2In [OTy, 4B],

3170 dg /3170 dg N gt //‘/m Yo/ (Ve T
Note: B =sin ——— )y = — Vo/(Va ;
M/ Ve ! 20/ Vo 2e i 2T r

1 =3.44 X103m,
Gap-distance dg = 0.61 X 1073 m.

where I and K, are the modified Bessel
functions and

T \? 27 \?2
”'4/(4> (x) ©)
This cutoff reactor gives the same positive
reactance for extremely small distance of the
shorting plunger setting in comparison with
the coaxial reactor. The cutoff reactor is
mechanically simpler than the coaxial type.

The numerical circuit constants used to
obtain the values of Ry, and X are shown
in Figs. 2-4. The dimensions are based on
measurement of the actual circuit used. The
constants of the klystron cavity Cp, Lp, L,
and M were calculated by Fujisawa's
method.’® The impedance Zy and Z, in
Fig. 2 were calculated by Tanaka’'s method.”
The reactance of the antenna, X,, was cal-
culated assuming it was a uniform cylindri-
cal conductor. The computed results of R,
and X, are given in Table I, where cos ¢ is
the power factor of the circuit. These values
were checked by the experiment in the fol-
lowing way.

The gain of the reflex klystron amplifier
can be calculated by the following equation®
based on the regenerative action of the elec-
tron beam.

Vo

A= .
Vo — L82RswN cos
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where
A =gain,
Vo=anode voltage,
Iy=effective electron beam current,
B=Dbeam coupling coefficient,

N=number of electron transit time
cycles in the repeller space.
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The calculated results are listed in Table

IT with some measured data such as anode

and repeller voltage, effective current, and

dimensions of the tube. As shown in this

table, the calculated gains are in good agree-
ment with the measured gains.

Korvyu Isnir

Dept. of Elec. Engrg.

Marquette University

Milwaukee, Wis.

Some Comments on the Method
of Kyhl*

The purpose of this letter is not to criti-
cize the philosophy of Kyhl's' method nor
even to engage in a debate as to whether his
method is, or is not, more useful than ours.??
We find his proposals both interesting and
meaningful. First, we would like to call at-
tention to two errors in his letter and then
to show the close relation of his method to
ours.

Let us consider his method. He proposes
thata “T'”"=1/T be used when ] I‘| >1. This,
he claims, will produce his “double SMITH-
HTIMS chart.” This is in error because, if
|T| >1, the original point in the extended
Standard Smith chart?® is without the unit
circle, and the inversion type operation
(with or without the minus sign) within the
unit circle; hence, the “HTIMS” part of the
chart will coincide with the regular Smith
chart.
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where A and B are the two points on the
unit circle, intersected by the straight line,
connecting the center (0) and the inverse
point (I'y). The brackets indicate the cross
ratio of the four points in question. The final
analytic form shows the invariance of the
final point with respect to inversion in the
unit circle, which was proven geometrically.?
It is noted that the above equation is essen-
tially the same as that stated by Deschamps®
for the § transformation.

In comparing our results with Kyhl's, we
shall use his method with our modification.
It is conceded that there are other ways to
correct the proposed method. The first step
of inversion is the same in both procedures.
The difference occurs in the second step.
Our transformation (which is of course the
Deschamps'” 8 and ! transformation) is
best considered as finding the non-Euclidean
bisector of a line segment.®# The second step
in Kyhl’s procedure, the reflection, is an
involution.? The inversion® (also an involu-
tion), followed by the reflection, is a graphi-
cal way of performing a nonloxodromic bi-
linear transformation. The unit circle is the
isometric circle of the equivalent bilinear
transformation, which is “T'”=(2r'—1)/T.
This result also could have been obtained
analytically, instead of using the geometri-
cal interpretation. In summary, it is noted
that Kyhl's and our results are quite similar
in form, both analytically and geometrically,
but differ mostly in the final presentatiomn.
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Reply by R. L. Kyhl

I have no disagreement with the com-
ments of L. J. Kaplan and D. J. R. Stock.
I was thinking of plotting the two parts of the
chart from different origins. My chief inter-
est was in the type of graphical display
chosen.

While the issue was at the press, a similar
use of a double chart was published else-
where.10
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1960.

Scattering Matrix for an N-Port
Power-Divider Junction*

INTRODUCTION

During the course of an investigation of
a data-processing technique yielding effec-
tively reduced sidelobes and beamwidth for
a microwave radar antenna, the need arose
for multiport power dividers. In order to
avoid an undesirable decrease in the signal-
to-noise ratio, it was necessary that these
dividers waste no power. Consequently, a
scattering matrix was sought which would
have the obvious requirement that there
be no wave reflected in the input port and
which would allow the power to be divided
into arbitrary but fixed relative parts.

It should be noted that there now exist
two methods! for synthesizing an #z-port
junction at a single frequency directly from
the normalized scattering matrix, without
use of the associated impedance matrix.

THE SCATTERING MATRIX

A reciprocal, lossless junction can be rep-
resented by a symmetric, unitary scattering
matrix S’. It is sufficient to consider a real
matrix first without losing generality, be-
cause the matrix S’ for the general case (in-
cluding phase shifts) can be derived from
the real case by a simple transformation.?

The purpose of this paper is to find the
scattering matrix for an #m-port junction,
such that when a wave is fed into, say, port
one, there will be no reflected wave in that
port, and such that the amplitude of the
wave transmitted to port £ is equal to a
given x;. Analytically expressed, this re-
quires that

X = 2 Sbu = Su, )]
where the x; are subject to the restriction
=0 and ) x?=1. 2)
b2
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Correspondence

Symmetry requires that
S iy = sz, (3)

and unitarity, which reduces to orthogonal-
ity for the real case considered here, re-
quires that

> (S)mskj =2 SuS, =8, )]
] 1

[where use has been made of (3)].
the matrix S satisfying (1), (3), and (4)
may be obtained as follows:

A Su=0,

B. Sw=ux2—1 fork>1, ](5)
C. Sy =Sp=wmx, forisj,i> 1,j>1,i
D. Su=Su=a forz>1.

To prove that (5) is the required solution,
it is only necessary to verify that it satisfies
(1), (3),and (4). From 4 and D, it is evident
that (1) is satisfied, and from C and D it is
evident that (3) is satisfied. To verify that
(4) is also satisfied, it is necessary to consider
separately various possible values of 7 and 7,
because of the special nature of the various
Sij.

1) i=j=1.

Using (2) and the rules given in (5),

>SSk = 2wt =1,
=i i

which satisfies (4).
2) i=j#=1.
Proceeding as above,
ZSLICSM = Stlz + SHZ + Z SikSki
=t Bl

x4 (02— 12+ w2 L %2,

kAT

According to (2), the above sum on k is
(1 —x,%) and hence the right side reduces to
one as required.

3) ix].
> 8uSk = SaSy, + SuS., + 558,
k=1
+ Z SoiSkye (6)
AL

It is necessary to consider separately the
case 1=1 (or j=1) and 715£j.

a) 1=1.

For this case, the above expression re-

reduces to

>SSk = xy(x,? — 1)+ D a? = 0.
k=1 ks2y
The case =1 is essentially the same ags
that above and therefore (4) is satisfied
in both of these cases.
b) i=#1+5.
For this case, (6) becomes

n

Z SaSey = xix; + x5, (62 4 5,2 — 2)
At
-+ %) > ok

ki
When use is made of (2), the above equa-
tion reduces to zero as required.

CONCLUSION

1t bas been shown that it is theoretically
possible to provide a junction which will di-
vide an input wave into many output waves
of arbitrary but fixed relative amplitudes.
The arbitrariness of the power division
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means that one may choose any ratios for

the output waves and have no reflected

wave in the input port. Once such a divider

is constructed, however, the ratio of the
output waves is fixed.
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Lossy Resonant Slot Coupling*

The paper by Allen and Kino! suggests a
novel method of combating troublesome cut-
off oscillations in periodic slow-wave struc-
tures. The idea is to couple loss periodically
into the system through slots which are
resonant at the center of the (narrow) oscil-
lation range. The high Q of the slots will
effectively decouple the loss in the operating
range of the pass band.

To develop this idea, we start with Allen
and Kino's (13) for the voltage ¢{x) along
the slot in terms of the tangential H field
along the slot. With respect to their Fig. 2
coordinates, shown in Fig. 1 below, we can
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Fig. 1—A lossy slot in a cavity wall. Voltage ¢(x)
exists across the slot gap, d.

write the transmission line equatiou for the
slot voltage as

(0%/0x* + k) (%)
= — ijo[(Iclqcx)-f— - ﬁ vJ (1)

where the tangential magnetic field is
(IcH:2). on the +3- or cavity side of the
slot and is H,_ on the —z-side. Eq. (1)
can be derived rigorously for a TEM slot
mode. The caret denotes a total field, and
we have split the cavity field into an ampli-
tude I, and a vector field pattern /', for
equivalent circuit purposes; this notation
differs from that of Aller and Kino. Lo is
the slot inductance per unit length in the
x-direction.

Let us introduce the lossy susceptance
G+jB by saying that the average voltage
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